Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(5): eadd6165, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724232

RESUMEN

Retinoid-related orphan receptor (RAR) gamma (RORγt)-expressing regulatory T cells (RORγt+ Tregs) play pivotal roles in preventing T cell hyperactivation and maintaining tissue homeostasis, in part by secreting the anti-inflammation cytokine interleukin-10 (IL-10). Here, we report that hypoxia-induced factor 1α (HIF1α) is the master transcription factor for Il10 in RORγt+ Tregs. This critical anti-inflammatory pathway is negatively regulated by an RNA binding protein DEAD box helicase 5 (DDX5). As a transcriptional corepressor, DDX5 restricts the expression of HIF1α and its downstream target gene Il10 in RORγt+ Tregs. T cell-specific Ddx5 knockout (DDX5ΔT) mice have augmented RORγt+ Treg suppressor activities and are better protected from intestinal inflammation. Genetic ablation or pharmacologic inhibition of HIF1α restores enteropathy susceptibility in DDX5ΔT mice. The DDX5-HIF1α-IL-10 pathway is conserved in mice and humans. These findings reveal potential therapeutic targets for intestinal inflammatory diseases.


Asunto(s)
Interleucina-10 , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Humanos , Ratones , Animales , Interleucina-10/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Unión Proteica
3.
PLoS Genet ; 19(1): e1010630, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706168

RESUMEN

FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of ß1 integrin specifically in the myocardium of FlncgKO mice. Although deleting ß1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both ß1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with ß1 integrin to maintain the structural integrity of myocardium during mammalian heart development.


Asunto(s)
Filaminas , Integrina beta1 , Miocardio , Animales , Ratones , Cardiomiopatía Hipertrófica , Filaminas/genética , Integrina beta1/genética , Miocitos Cardíacos
4.
Nat Commun ; 13(1): 7444, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460641

RESUMEN

Mechanisms by which specific histone modifications regulate distinct gene networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression during cardiogenesis. Embryonic cardiomyocyte ablation of Dot1l revealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific transcriptional networks at two critical cardiogenic junctures: embryonic cardiogenesis, where it was particularly important for left ventricle-specific genes, and postnatal cardiomyocyte cell cycle withdrawal, with Dot1L mutants having more mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity. Mechanistic analyses revealed that H3K79me2 in two distinct domains, gene bodies and regulatory elements, synergized to promote expression of genes activated by DOT1L. Surprisingly, H3K79me2 in specific regulatory elements also contributed to silencing genes usually not expressed in cardiomyocytes. These results reveal mechanisms by which DOT1L successively regulates left ventricle specification and cardiomyocyte cell cycle withdrawal.


Asunto(s)
Redes Reguladoras de Genes , Miocitos Cardíacos , División Celular , Ciclo Celular/genética , Ventrículos Cardíacos
5.
Circulation ; 145(8): 586-602, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34915728

RESUMEN

BACKGROUND: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS: Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS: Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS: These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
6.
PLoS Genet ; 17(9): e1009785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34506481

RESUMEN

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Asunto(s)
Complejo Mediador/metabolismo , Miocitos Cardíacos/metabolismo , Transcripción Genética , Animales , Femenino , Masculino , Complejo Mediador/genética , Complejo Mediador/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
JCI Insight ; 5(16)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32814711

RESUMEN

Nexilin (NEXN) was recently identified as a component of the junctional membrane complex required for development and maintenance of cardiac T-tubules. Loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy (DCM) and premature death. A 3 bp deletion (1948-1950del) leading to loss of the glycine in position 650 (G650del) is classified as a variant of uncertain significance in humans and may function as an intermediate risk allele. To determine the effect of the G650del variant on cardiac structure and function, we generated a G645del-knockin (G645del is equivalent to human G650del) mouse model. Homozygous G645del mice express about 30% of the Nexn expressed by WT controls and exhibited a progressive DCM characterized by reduced T-tubule formation, with disorganization of the transverse-axial tubular system. On the other hand, heterozygous Nexn global KO mice and genetically engineered mice encoding a truncated Nexn missing the first N-terminal actin-binding domain exhibited normal cardiac function, despite expressing only 50% and 20% of the Nexn, respectively, expressed by WT controls, suggesting that not only quantity but also quality of Nexn is necessary for a proper function. These findings demonstrated that Nexn G645 is crucial for Nexn's function in tubular system organization and normal cardiac function.


Asunto(s)
Cardiomiopatías/genética , Corazón/fisiopatología , Proteínas de Microfilamentos/genética , Animales , Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Homocigoto , Ratones Mutantes , Proteínas de Microfilamentos/metabolismo , Mutación , Miocitos Cardíacos/patología
8.
Circ Heart Fail ; 13(7): e006935, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32635769

RESUMEN

BACKGROUND: NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. METHODS: Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca2+ transient studies were conducted. RESULTS: Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P<0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P<0.05). CONCLUSIONS: Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Proteínas de Microfilamentos/fisiología , Microtúbulos/fisiología , Miocitos Cardíacos/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Factores de Edad , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 318(6): H1509-H1515, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383995

RESUMEN

Protein kinases play an integral role in cardiac development, function, and disease. Recent experimental and clinical data have implied that protein kinases belonging to a family of atypical α-protein kinases, including α-protein kinase 2 (ALPK2), are important for regulating cardiac development and maintaining function via regulation of WNT signaling. A recent study in zebrafish reported that loss of ALPK2 leads to severe cardiac defects; however, the relevance of ALPK2 has not been studied in a mammalian animal model. To assess the role of ALPK2 in the mammalian heart, we generated two independent global Alpk2-knockout (Alpk2-gKO) mouse lines, using CRISPR/Cas9 technology. We performed physiological and biochemical analyses of Alpk2-gKO mice to determine the functional, morphological, and molecular consequences of Alpk2 deletion at the organismal level. We found that Alpk2-gKO mice exhibited normal cardiac function and morphology up to one year of age. Moreover, we did not observe altered WNT signaling in neonatal Alpk2-gKO mouse hearts. In conclusion, Alpk2 is dispensable for cardiac development and function in the murine model. Our results suggest that Alpk2 is a rapidly evolving gene that lost its essential cardiac functions in mammals.NEW & NOTEWORTHY Several studies indicated the importance of ALPK2 for cardiac function and development. A recent study in zebrafish report that loss of ALPK2 leads to severe cardiac defects. In contrast, murine Alpk2-gKO models developed in this work display no overt cardiac phenotype. Our results suggest ALPK2, as a rapidly evolving gene, lost its essential cardiac functions in mammals.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Proteínas Quinasas/genética , Animales , Corazón/fisiología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo
11.
Cell Rep ; 30(2): 571-582.e2, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940497

RESUMEN

Despite decades of studies suggesting that the in vivo adipocyte progenitor resides within the vascular niche, the exact nature of this progenitor remains controversial because distinct studies have attributed adipogenic properties to multiple vascular cell types. Using Cre recombinases labeling distinct vascular lineages, we conduct parallel lineage tracing experiments to assess their degree of contribution to de novo adipogenesis. Although we detect occasional adipocytes that were lineage traced by endothelial or mural recombinases, these are rare events. On the other hand, platelet-derived growth factor receptor alpha (PDGFRα)-expressing adventitial or capsular fibroblasts make a significant contribution to adipocytes in all depots and experimental settings tested. Our data also suggest that fibroblasts transition to an intermediate beige adipocyte phenotype prior to differentiating to a mature white adipocyte. These observations, together with histological analyses revealing that adipose tissue fibroblasts express the mural cell marker PDGFRß, harmonize a highly controversial field with implications for multiple human diseases, including the pandemic of obesity.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Linaje de la Célula/fisiología , Fibroblastos/metabolismo , Obesidad/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Humanos
12.
Proc Natl Acad Sci U S A ; 116(37): 18423-18428, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444302

RESUMEN

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure's lateral elements (LEs). While the components of the mammalian chromosome axis/LE-including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2-are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


Asunto(s)
Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/metabolismo , Microscopía/métodos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Masculino , Mamíferos/genética , Meiosis , Ratones , Espermatocitos/metabolismo , Coloración y Etiquetado , Complejo Sinaptonémico/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 316(2): H392-H399, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499714

RESUMEN

Bcl-2-associated athanogene 3 (BAG3) is a cochaperone protein and a central player of the cellular protein quality control system. BAG3 is prominently expressed in the heart and plays an essential role in cardiac protein homeostasis by interacting with chaperone heat shock proteins (HSPs) in large, functionally distinct multichaperone complexes. The BAG3 mutation of proline 209 to leucine (P209L), which resides in a critical region that mediates the direct interaction between BAG3 and small HSPs (sHSPs), is associated with cardiomyopathy in humans. However, the mechanism by which the BAG3 P209L missense mutation leads to cardiomyopathy remains unknown. To determine the molecular basis underlying the cardiomyopathy caused by the BAG3 P209L mutation, we generated a knockin (KI) mouse model in which the endogenous Bag3 gene was replaced with mutant Bag3 containing the P215L mutation, which is equivalent to the human P209L mutation. We performed physiological, histological, and biochemical analyses of Bag3 P209L KI mice to determine the functional, morphological, and molecular consequences of the P209L mutation. We found that Bag3 P209L KI mice exhibited normal cardiac function and morphology up to 16 mo of age. Western blot analysis further revealed that levels of sHSPs, stress-inducible HSPs, ubiquitinated proteins, and autophagy were unaffected in P209L mutant mouse hearts. In conclusion, the P209L mutation in Bag3 does not cause cardiomyopathy in mice up to 16 mo of age under baseline conditions. NEW & NOTEWORTHY Bcl-2-associated athanogene 3 (BAG3) P209L mutation is associated with human cardiomyopathy. A recent study reported that transgenic mice overexpressing human BAG3 P209L in cardiomyocytes have cardiac dysfunction. In contrast, our P209L mice that express mutant BAG3 at the same level as that of wild-type mice displayed no overt phenotype. Our results suggest that human cardiomyopathy may result from species-specific requirements for the conserved motif that is disrupted by P209L mutation or from genetic background-dependent effects.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatías/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Femenino , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Unión Proteica , Especificidad de la Especie , Ubiquitinación
14.
Circ Res ; 123(4): 428-442, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29903739

RESUMEN

RATIONALE: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type-specific requirement for TBX20 in early myocardial development remains to be explored. OBJECTIVE: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. METHODS AND RESULTS: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. CONCLUSIONS: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/embriología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Fase G1 , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Fase S , Proteínas de Dominio T Box/metabolismo
15.
Biophys Rep ; 4(1): 25-38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29577067

RESUMEN

Insulin release by pancreatic ß cells plays a key role in regulating blood glucose levels in humans, and to understand the mechanism for insulin secretion may reveal therapeutic strategies for diabetes. We found that PI4KIIα transgenic (TG) mice have abnormal glucose tolerance and higher serum glucose levels than wild-type mice. Glucose-stimulated insulin secretion was significantly reduced in both PI4KIIα TG mice and PI4KIIα-overexpressing pancreatic ß cell lines. A proximity-based biotin labeling technique, BioID, was used to identify proteins that interact with PI4KIIα, and the results revealed that PI4KIIα interacts with PKD and negatively regulates its activity. The effect of PI4KIIα on insulin secretion was completely rescued by altering PKD activity. PI4KIIα overexpression also worsened glucose tolerance in streptozotocin/high-fat diet-induced diabetic mice by impairing insulin secretion. Our study has shed new light on PI4KIIα function and mechanism in diabetes and identified PI4KIIα as an important regulator of insulin secretion.

16.
Circ Res ; 122(4): 583-590, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29269349

RESUMEN

RATIONALE: Myocardial infarction is a major cause of adult mortality worldwide. The origin(s) of cardiac fibroblasts that constitute the postinfarct scar remain controversial, in particular the potential contribution of bone marrow lineages to activated fibroblasts within the scar. OBJECTIVE: The aim of this study was to establish the origin(s) of infarct fibroblasts using lineage tracing and bone marrow transplants and a robust marker for cardiac fibroblasts, the Collagen1a1-green fluorescent protein reporter. METHODS AND RESULTS: Using genetic lineage tracing or bone marrow transplant, we found no evidence for collagen-producing fibroblasts derived from hematopoietic or bone marrow lineages in hearts subjected to permanent left anterior descending coronary artery ligation. In fact, fibroblasts within the infarcted area were largely of epicardial origin. Intriguingly, collagen-producing fibrocytes from hematopoietic lineages were observed attached to the epicardial surface of infarcted and sham-operated hearts in which a suture was placed around the left anterior descending coronary artery. CONCLUSIONS: In this controversial field, our study demonstrated that the vast majority of infarct fibroblasts were of epicardial origin and not derived from bone marrow lineages, endothelial-to-mesenchymal transition, or blood. We also noted the presence of collagen-producing fibrocytes on the epicardial surface that resulted at least in part from the surgical procedure.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula , Infarto del Miocardio/terapia , Miofibroblastos/citología , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/efectos adversos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Pericardio/citología
17.
Cancer Res ; 77(22): 6253-6266, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827373

RESUMEN

While phosphatidylinositol 4-kinase (PI4KIIα) has been identified as a potential target for antitumor therapy, the clinical applications of PI4KIIα are limited by a lack of specific inhibitors. Here we report the first small-molecule inhibitor (SMI) of human PI4KIIα. Docking-based and ligand-based virtual screening strategies were first employed to identify promising hits, followed by two rounds of kinase activity inhibition validation. 2-(3-(4-Chlorobenzoyl)thioureido)-4-ethyl-5-methylthiophene-3-carboxamide (PI-273) exhibited the greatest inhibitory effect on PI4KIIα kinase activity (IC50 = 0.47 µmol/L) and suppressed cell proliferation. Surface plasmon resonance and thermal shift assays indicated that PI-273 interacted directly with PI4KIIα. Kinetic analysis identified PI-273 as a reversible competitive inhibitor with respect to the substrate phosphatidylinositol (PI), which contrasted with most other PI kinase inhibitors that bind the ATP binding site. PI-273 reduced PI4P content, cell viability, and AKT signaling in wild-type MCF-7 cells, but not in PI4KIIα knockout MCF-7 cells, indicating that PI-273 is highly selective for PI4KIIα. Mutant analysis revealed a role of palmitoylation insertion in the selectivity of PI-273 for PI4KIIα. In addition, PI-273 treatment retarded cell proliferation by blocking cells in G2-M, inducing cell apoptosis and suppressing colony-forming ability. Importantly, PI-273 significantly inhibited MCF-7 cell-induced breast tumor growth without toxicity. PI-273 is the first substrate-competitive, subtype-specific inhibitor of PI4KIIα, the use of which will facilitate evaluations of PI4KIIα as a cancer therapeutic target. Cancer Res; 77(22); 6253-66. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Tiofenos/farmacología , Tiourea/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Antígenos de Histocompatibilidad Menor/metabolismo , Estructura Molecular , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ratas Sprague-Dawley , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Especificidad por Sustrato , Tiofenos/química , Tiourea/química , Tiourea/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Protein Cell ; 5(6): 457-68, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24801752

RESUMEN

Our previous studies indicate that phosphatidylinositol 4-kinase IIα can promote the growth of multi-malignant tumors via HER-2/PI3K and MAPK pathways. However, the molecular mechanisms of this pathway and its potential for clinical application remain unknown. In this study, we found that PI4KIIα could be an ideal combinatorial target for EGFR treatment via regulating EGFR degradation. Results showed that PI4KIIα knockdown reduced EGFR protein level, and the expression of PI4KIIα shows a strong correlation with EGFR in human breast cancer tissues (r = 0.77, P < 0.01). PI4KIIα knockdown greatly prolonged the effects and decreased the effective dosage of AG-1478, a specific inhibitor of EGFR. In addition, it significantly enhanced AG1478-induced inhibition of tumor cell survival and strengthened the effect of the EGFR-targeting anti-cancer drug Iressa in xenograft tumor models. Mechanistically, we found that PI4KIIα suppression increased EGFR ligand-independent degradation. Quantitative proteomic analysis by stable isotope labeling with amino acids in cell culture (SILAC) and LC-MS/MS suggested that HSP90 mediated the effect of PI4KIIα on EGFR. Furthermore, we found that combined inhibition of PI4KIIα and EGFR suppressed both PI3K/AKT and MAPK/ERK pathways, and resulted in downregulation of multiple oncogenes like PRDX2, FASN, MTA2, ultimately leading to suppression of tumor growth. Therefore, we conclude that combined inhibition of PI4KIIα and EGFR exerts a multiple anti-tumor effect. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα presents a novel strategy to combat EGFR-dependent tumors.


Asunto(s)
Receptores ErbB/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Trasplante Heterólogo , Tirfostinos/farmacología
19.
Nat Commun ; 5: 3552, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24675427

RESUMEN

Phosphatidylinositol 4-kinase IIα (PI4KIIα), a membrane-associated PI kinase, plays a central role in cell signalling and trafficking. Its kinase activity critically depends on palmitoylation of its cysteine-rich motif (-CCPCC-) and is modulated by the membrane environment. Lack of atomic structure impairs our understanding of the mechanism regulating kinase activity. Here we present the crystal structure of human PI4KIIα in ADP-bound form. The structure identifies the nucleotide-binding pocket that differs notably from that found in PI3Ks. Two structural insertions, a palmitoylation insertion and an RK-rich insertion, endow PI4KIIα with the 'integral' membrane-binding feature. Molecular dynamics simulations, biochemical and mutagenesis studies reveal that the palmitoylation insertion, containing an amphipathic helix, contributes to the PI-binding pocket and anchors PI4KIIα to the membrane, suggesting that fluctuation of the palmitoylation insertion affects PI4KIIα's activity. We conclude from our results that PI4KIIα's activity is regulated indirectly through changes in the membrane environment.


Asunto(s)
Membrana Celular/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Secuencias de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Humanos , Lipoilación , Antígenos de Histocompatibilidad Menor , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estructura Terciaria de Proteína , Transporte de Proteínas
20.
Protein Cell ; 3(12): 929-33, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23129220

RESUMEN

S-Nitros(yl)ation is a ubiquitous redox-based post-translational modification of protein cysteine thiols by nitric oxide or its derivatives, which transduces the bioactivity of nitric oxide (NO) by regulation of protein conformation, activity, stability, localization and protein-protein interactions. These years, more and more S-nitrosated proteins were identified in physiological and pathological processes and the number is still growing. Here we developed a database named SNObase ( http://www.nitrosation.org ), which collected S-nitrosation targets extracted from literatures up to June 1st, 2012. SNObase contained 2561 instances, and provided information about S-nitrosation targets, sites, biological model, related diseases, trends of S-nitrosation level and effects of S-nitrosation on protein function. With SNObase, we did functional analysis for all the SNO targets: In the gene ontology (GO) biological process category, some processes were discovered to be related to S-nitrosation ("response to drug", "regulation of cell motion") besides the previously reported related processes. In the GO cellular component category, cytosol and mitochondrion were both enriched. From the KEGG pathway enrichment results, we found SNO targets were enriched in different diseases, which suggests possible significant roles of S-nitrosation in the progress of these diseases. This SNObase means to be a database with precise, comprehensive and easily accessible information, an environment to help researchers integrate data with comparison and relevancy analysis between different groups or works, and also an SNO knowledgebase offering feasibility for systemic and global analysis of S-nitrosation in interdisciplinary studies.


Asunto(s)
Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Azufre/metabolismo , Animales , Sitios de Unión , Enfermedad , Humanos , Internet , Ratones , Modelos Moleculares , Nitrosación , Proteínas/química , Ratas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...